Effects of pulse lung inflation on chest wall expiratory motor activity.
نویسندگان
چکیده
The effects of pulse lung inflation (LI) on expiratory muscle activity and phase duration (Te) were determined in anesthetized, spontaneously breathing dogs (n = 20). A volume syringe was used to inflate the lungs at various times during the expiratory phase. The magnitude of lung volume was assessed by the corresponding change in airway pressure (Paw; range 2-20 cmH(2)O). Electromyographic (EMG) activities were recorded from both thoracic and abdominal muscles. Parasternal muscle EMG was used to record inspiratory activity. Expiratory activity was assessed from the triangularis sterni (TS), internal intercostal (IIC), and transversus abdominis (TA) muscles. Lung inflations <7 cmH(2)O consistently inhibited TS activity but had variable effects on TA and IIC activity and expiratory duration. Lung inflations resulting in Paw values >7 cmH(2)O, however, inhibited expiratory EMG activity of each of the expiratory muscles and lengthened Te in all animals. The responses of expiratory EMG and Te were directly related to the magnitude of the lung inflation. The inhibition of expiratory motor activity was independent of the timing of pulse lung inflation during the expiratory phase. The inhibitory effects of lung inflation were eliminated by bilateral vagotomy and could be reproduced by electrical stimulation of the vagus nerve. We conclude that pulse lung inflation resulting in Paw between 7 and 20 cmH(2)O produces a vagally mediated inhibition of expiratory muscle activity that is directly related to the magnitude of the inflation. Lower inflation pressures produce variable effects that are muscle specific.
منابع مشابه
HIGHLIGHTED TOPIC Reflexes from the Lungs and Airways Effects of pulse lung inflation on chest wall expiratory motor activity
Jaroslaw R. Romaniuk, Thomas E. Dick, Krzysztof E. Kowalski, and Anthony F. DiMarco Departments of Physiology and Biophysics, Case Western Reserve University, MetroHealth Medical Center, Cleveland; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Brecksville; and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Case Western Reserve University, Cleve...
متن کاملTranspulmonary and pleural pressure in a respiratory system model with an elastic recoiling lung and an expanding chest wall
BACKGROUND We have shown in acute lung injury patients that lung elastance can be determined by a positive end-expiratory pressure (PEEP) step procedure and proposed that this is explained by the spring-out force of the rib cage off-loading the chest wall from the lung at end-expiration. The aim of this study was to investigate the effect of the expanding chest wall on pleural pressure during P...
متن کاملEsophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress?
Acute lung injury can be worsened by inappropriate mechanical ventilation, and numerous experimental studies suggest that ventilator-induced lung injury is increased by excessive lung inflation at end inspiration or inadequate lung inflation at end expiration. Lung inflation depends not only on airway pressures from the ventilator but, also, pleural pressure within the chest wall. Although esop...
متن کاملAcute effects of thixotropy conditioning of inspiratory muscles on end-expiratory chest wall and lung volumes in normal humans.
Thixotropy conditioning of inspiratory muscles consisting of maximal inspiratory effort performed at an inflated lung volume is followed by an increase in end-expiratory position of the rib cage in normal human subjects. When performed at a deflated lung volume, conditioning is followed by a reduction in end-expiratory position. The present study was performed to determine whether changes in en...
متن کاملEffect of lung transplant and volume reduction surgery on respiratory muscle function.
Lung transplantation and lung volume reduction surgery have opened a new therapeutic era for patients with advanced emphysema. In addition to providing impressive clinical benefits, they have helped us better understand how the chest wall and respiratory muscles adapt to chronic hyperinflation. This article reviews the effects of these procedures on respiratory muscle and chest wall function. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 102 1 شماره
صفحات -
تاریخ انتشار 2007